Limiter-based entropy stabilization of semi-discrete and fully discrete schemes for nonlinear hyperbolic problems

نویسندگان

چکیده

The algebraic flux correction (AFC) schemes presented in this work constrain a standard continuous finite element discretization of nonlinear hyperbolic problem to satisfy relevant maximum principles and entropy stability conditions. desired properties are enforced by applying limiter antidiffusive fluxes that represent the difference between high-order baseline scheme property-preserving approximation Lax–Friedrichs type. In first step limiting procedure, given target adjusted way guarantees preservation local and/or global bounds. second step, additional is performed, if necessary, ensure validity fully discrete semi-discrete inequalities. limiter-based fixes considered applicable discretizations scalar equations systems alike. underlying inequality constraints formulated using Tadmor’s theory. proposed limiters impose entropy-conservative or entropy-dissipative bounds on rate production Runge–Kutta (RK) time discretizations. Two versions fix developed for purpose. one incorporates temporal into constraints, which makes them more restrictive dependent step. algorithm interprets final stage AFC-RK method as constrained an implicit low-order (algebraic space + backward Euler time). case, iterative required, but less can be performed algorithms problem. To motivate use fixes, we prove version Lax–Wendroff theorem perform numerical studies test problems. our experiments, converge correct weak solutions conservation laws, equations, shallow water equations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder

We consider weak solutions of (hyperbolic or hyperbolic-elliptic) systems of conservation laws in one-space dimension and their approximation by finite difference schemes in conservative form. The systems under consideration are endowed with an entropy-entropy flux pair. We introduce a general approach to construct second and third order accurate, fully discrete (in both space and time) entropy...

متن کامل

the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media

امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...

Solution of Stefan Problems by Fully Discrete Linear Schemes

where Ω ⊂ R is a polygonal convex domain with the boundary Γ, T <∞, ν is the outward normal to Γ, the functions f, g, β, k are Lipschitz continuous, β : R → R is nondecreasing and k(s) is a positive definite symmetric d × d-matrix for any s ∈ R. The use of linear approximation schemes for solving these problems from both the theoretical and numerical point of view has been extensively studied. ...

متن کامل

Generalized Monotone Schemes , Discrete Paths of Extrema , and Discrete Entropy

Solutions of conservation laws satisfy the monotonicity property: the number of local extrema is a non-increasing function of time, and local maximum/minimum values decrease/increase monotonically in time. This paper investigates this property from a numerical standpoint. We introduce a class of fully discrete in space and time, high order accurate, diierenceschemes, called generalized monotone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2022

ISSN: ['0045-7825', '1879-2138']

DOI: https://doi.org/10.1016/j.cma.2021.114428